

4

14

18

Journal of Public Economics 1 (2000) 000-000

www.elsevier.nl/locate/econbase

Searching for ghosts: who are the nonfilers and how much tax do they owe?

Brian Erard^{a,*}, Chih-Chin Ho^b

15 ^aB. Eran 16 ^bInter

^aB. Erard and Associates, 2350 Swaps Court, Reston, Virginia 20191, USA ^bInternal Revenue Service, Office of Research, Washington, D.C., USA

17 Received 30 November 1999; received in revised form 30 July 2000; accepted 31 July 2000

19 Abstract

20 This paper is about 'ghosts' - individuals who fail to comply with their income tax 21 filing requirements. As their name suggests, the identities and characteristics of these individuals are shrouded in mystery. In this paper we attempt to de-mystify the issues 22 surrounding ghosts and examine their role in the compliance process. We begin by 23 extending a standard model of tax evasion to account for the existence of ghosts. We then 24 examine the empirical significance and policy relevance of our extension using a unique 25 data set containing detailed tax and audit information for both filers and nonfilers of U.S. 26 federal income tax returns. © 2000 Elsevier Science S.A. All rights reserved. 27

28 Keywords: Tax evasion; Tax avoidance; Income tax; Ghost

29 JEL classification: H24; H26; H31

30

31 **1. Introduction**

Over the past three decades, researchers have devoted substantial attention to the decision concerning how much income to report on one's tax return and the tax authority's response to this report.¹ A group that has been largely neglected by this

⁶

^{5 *}Corresponding author. Tel.: +01-703-390-9368.

⁷ *E-mail address:* brerard@aol.com (B. Erard).

¹See Andreoni et al. (1998) for a recent survey of this literature.

^{1 0047-2727/00/\$ -} see front matter © 2000 Elsevier Science S.A. All rights reserved.

² PII: S0047-2727(00)00132-8

(1)

B. Erard, C.-C. Ho / Journal of Public Economics 1 (2000) 000-000

research is those individuals who simply choose not to file a return, a group 42 sometimes referred to as 'ghosts' by academics and policy-makers.² Based on 43 available evidence from the U.S. (Crane and Nourzad, 1993) and Jamaica (Alm et 44 al., 1991), it appears that nonfiling poses a significant problem. However, very 45 little is known about this form of evasion. In this paper we employ a unique data 46 source to learn about the characteristics of ghosts, examine the factors driving their 47 decision not to file a tax return, and measure their unpaid tax liability. We begin in 48 Section 2 by developing an extended model of taxpayer reporting behavior that 49 includes nonfiling as a strategic option. We then examine the empirical significance 50 and policy relevance of our extension using detailed line-item tax and audit 51 information for both filers and nonfilers of U.S. federal income tax returns. We lay 52 53 out our econometric framework in Section 3, summarize our data in Section 4, and present the results of our analysis in Section 5. In Section 6, we employ our 54 estimates to compare the profiles of the filer and ghost populations. Section 7 55 contains a discussion of the net tax liabilities of ghosts, and a brief conclusion is 56 offered in Section 8. 57

58 2. Theoretical framework

 $(1 - 1)^{-1}$

In this section, a simple theoretical framework is presented for understanding 59 the decision whether to file an income tax return. We begin by considering a 60 standard model of taxpayer reporting behavior. We then extend the model to 61 account for nonfiling as a strategic option. In the traditional economic model of 62 evasion, a taxpayer approaches his reporting decision as he would a gamble, 63 balancing the risk of audit and penalty against the benefits of a reduced tax 64 payment. Formally, he chooses an amount of income to report X to maximize the 65 following expression: 66

38

$$-p)U[Y-tX] + pU[Y-tX-(1+\theta)t(Y-X)],$$

where $U[\cdot]$ is his utility function, Y is his true income, p is the probability of audit, t is the proportional tax rate, and θ is the proportional penalty rate on undeclared taxes.³ The optimal report depends on the taxpayer's preferences for risk as well as the values of the tax and enforcement parameters.

Although many elaborations of this model have been developed over the years,

73

²The term 'ghosts' is borrowed from Cowell (1990), who notes that it is commonly used by Inland Revenue in the U.K. to refer to individuals for whom no official record exists. Refer to Cowell and Gordon (1995) for a theoretical analysis of the role of ghosts in sales tax evasion.

 ³This model is the classic specification given by Allingham and Sandmo (1972), amended as in
 Yitzhaki (1974) to allow the penalty rate to depend on unreported taxes rather than unreported income.
 No penalty or reward is applied if reported income exceeds true income.

3

B. Erard, C.-C. Ho / Journal of Public Economics 1 (2000) 000-000

virtually all of them have followed the traditional specification in presupposing 82 that an individual will choose to make a tax report. In fact, though, a nontrivial 83 number of individuals elect each year to take the ultimate tax shortcut of not filing 84 a return at all. To account for such 'ghosts', it is necessary to extend the above 85 model to describe the incentives associated with not filing. In our extension, we 86 focus on three fundamental choices facing a potential taxpayer. First, there is the 87 decision whether to file a return at all. Second, if the individual should choose to 88 file, he must decide (as in the standard model) how much income to report. Third, 89 regardless of his filing decision, he must choose how much tax (if any) to prepay 90 through withholding and estimated tax payments. This expanded set of compliance 91 decisions raises some additional considerations for the individual to take into 92 93 account when formulating his compliance strategy. In particular, his choices are likely to be shaped by the burden associated with preparing and filing a return, the 94 risk of being identified as a nonfiler, and the penalties for not filing a return and for 95 prepaying too little in taxes. As in the traditional model of evasion, we postulate 96 that the individual approaches his compliance decisions by examining the expected 97 utility associated with different alternatives. If the individual were to file a return, 98 his utility would be determined by the following expression: 99

78

$$(1-p)U[Y-tX-\gamma(\overline{W}-W)-c]+pU[Y-tX-(1+\theta)t(Y-X)-\gamma(\overline{W}-W)-c].$$
(2)

101
$$W$$
) – c].

Although this expression is similar to Eq. (1), observe that the individual's net 102 wealth has been reduced by a dollar measure of the burden of preparing and filing 103 a return c^4 . In addition, the individual now chooses the amount of tax to prepay W 104 as well as the amount of income to report on his return X. In the U.S., individuals 105 106 are required to pay most of their tax liability over the course of the year, prior to filing their tax return. Employers normally withhold a portion of their salaried 107 employees' paychecks for this purpose, submitting the amount withheld to the 108 Internal Revenue Service (IRS). An employee can elect to have either more or less 109 tax withheld than the standard amount to better address his personal tax situation. 110 Self-employed individuals are required to make periodic tax installment payments 111 based on their estimated tax liability for the year. Penalties are in place for those 112 who fail to prepay a sufficient share of their taxes.⁵ We capture the essence of the 113 U.S. prepayment rules in Eq. (2) by assuming that if total prepayments W are 114

⁴See Blumenthal and Slemrod (1992) for evidence on the magnitude of the U.S. income tax 74 75 compliance burden. Note that this model could be extended to allow c to be a function of the amount of 76 effort that goes into legal and illegal tax avoidance schemes. See, for example, Cross and Shaw (1982) and Slemrod (1995). 77

⁷⁹ ⁵Normally, an individual must prepay the lesser of his tax obligation for the prior year or 90 percent 80 of his current year's tax liability. The underpayment penalty is one-half of 1 percent of the shortfall per 81 month, up to a maximum of 25 percent.

157 4 B. Erard, C.-C. Ho / Journal of Public Economics 1 (2000) 000–000

below the minimum prepayment threshold (\overline{W}) , a penalty at the rate γ is applied to the shortfall.

In practice, of course, the individual may choose not to file a tax return. If he were to elect this option, his utility would instead be determined by the following expression:

126
$$(1-q)U[Y-W] + qU[Y-W-(1+f)(tY-W)-c],$$
 (3)

where q represents the probability the individual will be apprehended and f is the 127 nonfiler penalty rate that applies to the outstanding tax balance. In the U.S., the 128 penalty for not filing is equal to five percent of the unpaid tax liability for each 129 month the return is late, up to a maximum of 25 percent. In addition, the 130 above-mentioned penalty for underpayment of estimated taxes may also be applied 131 in some circumstances. If apprehended, a nonfiler would be required to submit a 132 tax return. Eq. (3) therefore accounts both for the burden c associated with 133 completing the return and any penalties for nonpayment of taxes. 134

We assume that the individual's actions proceed in the following sequence. At 135 the beginning of the period, he makes a tax prepayment of W (which might be 136 zero). For simplicity, we assume that the values of all parameters, including true 137 income Y, are known to him at this point. At the end of the period, the individual 138 either files a return or becomes a ghost. The individual is forward-looking and 139 140 recognizes that the optimal choice of W depends on what behavior he will choose at the end of the period. He therefore compares the maximum expected utility he 141 can achieve under the filing and nonfiling options, choosing the optimal value of W 142 based on the more attractive option. 143

144 If the individual were to file a return at the end of the period, it would be 145 optimal for him to make the minimum tax prepayment W^* that avoids a penalty; 146 i.e., to choose $W^* = \overline{W}$ in Eq. (2).⁶ Under this scenario, he would also want to 147 report an income of X^* on his return, determined as the implicit solution to the 148 following first-order condition:⁷

$$(1-p)tU'[Y-tX^*-c] = p\theta tU'[Y-tX^*-(1+\theta)t(Y-X^*)-c].$$
(4)

The left-hand side of Eq. (4) represents the utility gain from successfully evading taxes by an additional dollar, weighted by the probability of not being audited. Analogously, the right-hand side represents the utility loss from having been caught evading taxes by an additional dollar, weighted by the probability of audit. At the optimal level of evasion, the marginal expected benefit of understating income just equals the marginal expected cost.

156 119 If the individual instead were to become a ghost, it would be optimal for him to

⁶In our model, we ignore any borrowing motive for making insufficient tax prepayments. We observe, though, that given the current penalty rate in the U.S., such a motive might drive some

¹¹⁸ individuals to prepay less than W.

⁷We are assuming here that $p < 1/(1 + \theta)$; otherwise, the optimal report would equal Y.

select the prepayment W^{**} that maximizes Eq. (3).⁸ Specifically, he would want to choose W^{**} as the implicit solution to the following first-order condition:⁹

171
$$(1-q)tU'[Y-W^{**}] = qftU'[Y-W^{**}-(1+f)(tY-W^{**})-c].$$
 (5)

Similar to Eq. (4), this condition equates the marginal expected benefit from underpaying tax with the marginal expected cost.

If the value of Eq. (2), evaluated at X^* and W^* , exceeds that of Eq. (3), 174 evaluated at W^{**} , the individual will recognize that he can achieve a higher 175 expected utility by filing. He will therefore elect to make a tax prepayment of 176 177 $W^* = W$ at the beginning of the period. At the end of the period, he will file a return and report an income of X^* . On the other hand, if the above condition is not 178 satisfied, the individual will prefer to become a ghost. In this case, he will make a 179 tax prepayment of W^{**} at the beginning of the period and file no return at the end 180 of the period. 181

Observe that in the absence of a filing burden c, the first-order conditions 182 described by Eqs. (4) and (5) are isomorphic. Thus if c = 0, p = q, and $\theta = f$, the 183 optimal choice of tax prepayments W^{**} under the nonfiling option will be 184 precisely equal to t times the optimal choice of reported income X^* under the 185 filing option, and the individual will be indifferent between filing and not filing. It 186 follows that an individual will be relatively more likely to become a ghost the 187 greater the filing burden c, the lower the perceived chances for successful 188 underreporting (1-p), the higher the penalty rate for underreporting θ , and the 189 lower the probability q and rate of penalty f associated with not filing. 190

An issue not generally taken into account in studies of tax evasion is the 191 dynamic nature of an individual's compliance decisions.¹⁰ In practice, though, one 192 would expect to observe a high degree of persistence in filing behavior. Consider, 193 for example, an individual who failed to file in the previous tax year. If he were to 194 file a return for the current year, he may perceive that this would increase the risk 195 that his past filing violation would be uncovered. For similar reasons, a taxpayer 196 who did file a return for previous year may fear that the tax authority would 197 become suspicious if he elected not to file in the current year.¹¹ In our econometric 198

199

⁸In practice, a high value of *W* may provide a signal to the tax agency that the individual possesses sufficient income to have a tax filing requirement. A more general model would account for this possibility by allowing the probability of detection q to vary with *W*. Analogously, a low report *X* from a filer may serve as a signal to the tax agency of likely tax noncompliance, in which case p might tend to vary with *X*. However, the main factors influencing the choice between filing and not filing are adequately represented by the simpler fixed audit probability specification presented in this paper.

⁹We are assuming here that q < 1/(1+f); otherwise, the optimal prepayment would equal tY.

¹⁰Two exceptions are Engel and Hines (1999) and Erard (1992).

¹¹In fact, in the U.S. the IRS has what it calls a 'stop-filer' program designed to identify and investigate prior year taxpayers who have not filed a return for the current year.

239 6 B. Erard, C.-C. Ho / Journal of Public Economics 1 (2000) 000–000

analysis, we explicitly account for the recent filing history of the individuals in our
 sample to address possible persistence in behavior.

209 **3. Econometric framework**

210 In this section we develop an econometric framework for analyzing the decision whether to comply with one's income tax filing requirement. We restrict our 211 attention to individuals who were legally obliged to file a 1988 U.S. federal 212 individual income tax return. One was required to file a return in this year if 213 household gross income (excluding nontaxable sources of income) exceeded a 214 215 threshold, which varied according to one's age and marital status. For example, a single individual under 65 years of age was required to file a return if his gross 216 income exceeded \$4950. In contrast, the threshold for a married couple with both 217 spouses over 65 years of age was \$10 100.¹² 218

The members of our sample are divided into two categories, *filers* and *ghosts*, 219 according to whether they have complied with their 1988 filing requirements. As 220 discussed in Section 4 our data includes detailed line-item tax and occupation 221 information for individuals from each category. The data on filers comes from a 222 stratified random sample of the overall filer population. The data on ghosts comes 223 from a stratified random sample of the 'locatable' nonfiler population. The latter 224 population includes all ghosts who could be located through an intensive search by 225 IRS agents. Sample weights are available that make the filers and ghosts in our 226 sample broadly representative of the overall filer and locatable nonfiler popula-227 tions, respectively. The locatable nonfiler population is of considerable policy 228 interest, because it represents the portion of the overall ghost population that the 229 230 IRS would be able to uncover through an intensive search and audit process. However, it is also desirable to learn about the number of unlocatable nonfilers, 231 the amount of taxes that these individuals owe, and the motivations behind their 232 decision not to file an income tax return. The econometric specification presented 233 below makes it possible to draw inferences about all ghosts, whether locatable or 234 not. 235

236 3.1. Model specification

206

According to the theoretical framework presented in Section 2, an individual is more likely to file a return when the likelihood of apprehension for not filing is

¹²An individual also was required to file a return if he owed certain special taxes (e.g., social security tax for tips not reported to an employer); he had received advance Earned Income Credit payments from an employer; he had net earnings from self-employment of at least \$400; or if he had wages of \$100 or more from a church or qualified church-controlled organization that was exempt from employer social security taxes. In addition, special rules applied for individuals who were claimed as a dependent on another tax return.

7

(10)

(11)

B. Erard, C.-C. Ho / Journal of Public Economics 1 (2000) 000-000

high. One of the factors that will determine the likelihood of apprehension is the
ease with which the tax agency can locate the individual. In our data sample, an
intensive search by the IRS agents failed to locate a number of potential nonfilers.
We therefore model the probability that an individual can be located jointly with
the individual's filing decision. We begin by considering a specification in which
the probability of being located only indirectly affects the filing decision. We then
extend our specification to allow for a true simultaneous equations relationship.

Allow F^* to represent an index of the likelihood that an individual will file a return, and let L^* represent an index of the likelihood that the individual can be located. We specify the following model for these variables.

253
$$F^* = \beta'_F X_F + \epsilon_F \tag{6}$$

254
$$L^* = \beta'_L X_L + \epsilon_L, \tag{7}$$

where X_F and X_L are vectors of exogenous regressors and ϵ_F and ϵ_L are random disturbances. To complete the above model, it is necessary to specify the joint distribution of the error terms, or equivalently the joint distribution of the outcome variables. We define the binary outcomes of the filing decision as follows:

259 $F = \begin{cases} 1 & \text{if the individual files a return;} \\ 0 & \text{otherwise.} \end{cases}$

260 Similarly, we define the marginal outcomes of the nonfiler search process as:

261 $F = \begin{cases} 1 & \text{if the nonfiler is located;} \\ 0 & \text{otherwise.} \end{cases}$

We specify a joint logistic distribution for *F* and L^{13} Let $P_{FL}(F = f, L = l)$ denote the joint probability that F = f and L = l (where $f, l \subset \{0, 1\}$). The joint probability distribution is summarized by the following equations:

265
$$P_{FL}(F=1, L=1) = \exp(\beta'_F X_F + \beta'_L X_L + K)/D$$
(8)

266
$$P_F$$

$$_{L}(F = 1, L = 0) = \exp(\beta'_{F}X_{F})/D$$
 (9)

267
$$P_{FL}(F = 0, L = 1) = \exp(\beta'_{L}X_{L})/D$$

268
$$P_{FL}(F=0, L=0) = 1/D,$$

269 where

270
$$D = 1 + \exp(\beta'_L X_L) + \exp(\beta'_F X_F) + \exp(\beta'_F X_F + \beta'_L X_L + K).$$

The term K represents a measure of the strength of the correlation between the likelihood of filing and the probability of being located.

^{240 &}lt;sup>13</sup>See Nerlove and Press (1983), Mantel and Brown (1973), and Morimune (1979) for prior 241 applications based on this distribution.

(13)

306 8 B. Erard, C.-C. Ho / Journal of Public Economics 1 (2000) 000–000

To understand the relationship between the above specification and an ordinary univariate logit framework, consider the implied conditional probability that *F* equals one given that *L* equals zero $(P_{F|L}(F = 1|L = 0))$:

279
$$P_{F|L}(F=1|L=0) = \frac{\exp(\beta'_F X_F)}{1 + \exp(\beta'_F X_F)}$$

This is clearly a univariate logit specification of the filing decision for those individuals who could not be located if they elected not to file. Similarly,

282
$$P_{F|L}(F=1|L=1) = \frac{\exp(\beta'_F X_F + K)}{1 + \exp(\beta'_F X_F + K)},$$

which is a univariate logit specification of the filing decision for those individuals who could be located if they did not file. When K = 0, we see that the above two conditional probabilities are the same, implying that *F* and *L* are independent events. When K > 0, an individual who can be located is more likely to file than one who cannot be located, while the converse is true when K < 0.

288 3.2. Allowing for simultaneity

In the above specification, the parameter K provides an indirect link between the filing decision and the probability of being located. However, it is plausible that an increase in the probability of being located would have a direct impact on one's filing choice. The following extended specification allows for this possibility:

293
$$F^* = \beta'_F X_F + \alpha L^* + \epsilon_F \tag{12}$$

294 $L^* = \beta'_I X_I + \epsilon_I.$

Observe that the propensity to be located now enters directly as a regressor for the filing decision. Since our extended model constitutes a simultaneous equations specification, it is necessary to consider model identification. The parameters of the filing equation will be identified if at least one of the regressors in X_L is excluded from the regressors in X_F .¹⁴ We discuss our choice of exclusion restrictions below in Section 5.

To account for simultaneity within our logistic specification for F and L, we employ a limited information approach. In particular, we substitute for L^* in Eq. (12) to obtain:

$$F^* = \beta'_F X_F + \alpha \beta'_L X_L + u_F, \tag{14}$$

where
$$u_F = (\epsilon_F + \alpha \epsilon_L)$$
. From Eq. (14), it is apparent that we can account for the

275

¹⁴Note that Eq. (13) is identified even in the absence of any exclusion restrictions.

9

B. Erard, C.-C. Ho / Journal of Public Economics 1 (2000) 000-000

direct effect of L* on the filing decision by including the term $\alpha \beta'_I X_I$ in our 310 logistic specification of the joint probabilities. Our amended probability formulae 311 are as follows: 312

313
$$P_{FL}(F=1, L=1) = \exp(\beta'_F X_F + (1+\alpha)\beta'_L X_L + K)/D$$
(15)

314
$$P_{FL}(F=1, L=0) = \exp(\beta'_F X_F + \alpha \beta'_L X_L)/D$$
(16)

315
$$P_{FL}(F=0, L=1) = \exp(\beta'_L X_L)/D$$
 (17)

16
$$P_{FL}(F=0, L=0) = 1/D,$$
 (18)

where D is now defined as: 317

318
$$D = 1 + \exp(\beta'_L X_L) + \exp(\beta'_F X_F + \alpha \beta'_L X_L)$$

319
$$+ \exp(\beta'_F X_F + (1+\alpha)\beta'_L X_L + K)$$

3.3. Conditional likelihood function 320

Our data contain detailed information pertaining to the filing decision for two 321 groups of individuals: filers and located nonfilers. This information is not 322 available, however, for the remaining group (unlocated nonfilers). Given the 323 truncated nature of our sample, it is necessary to condition our analysis of the 324 filing decision on the first two groups. 325

The conditional likelihood function involves separate expressions for filers and 326 located nonfilers. For a member of the former group, our conditional likelihood 327 expression (L_1) represents the probability that F = 1 given that either F = 1 or 328 $(F = 0 \text{ and } L = 1)^{15}$ In particular, 329

330
$$L_{1} = \frac{\exp(\beta'_{F}X_{F} + \alpha\beta'_{L}X_{L}) + \exp(\beta'_{F}X_{F} + (1 + \alpha)\beta'_{L}X_{L} + K)}{\exp(\beta'_{L}X_{L}) + \exp(\beta'_{F}X_{F} + \alpha\beta'_{L}X_{L}) + \exp(\beta'_{F}X_{F} + (1 + \alpha)\beta'_{L}X_{L} + K)}.$$
331 (19)

331

The conditional likelihood expression for a located nonfiler (L_2) represents the 332 probability that (F = 0 and L = 1) given that either F = 1 or (F = 0 and L = 1). In 333 particular, 334

335
$$L_2 = \frac{\exp(\beta'_L X_L)}{\exp(\beta'_L X_L) + \exp(\beta'_F X_F + \alpha \beta'_L X_L) + \exp(\beta'_F X_F + (1+\alpha)\beta'_L X_L + K)}.$$
336 (20)

- 309

307 ¹⁵Observe that this expression concerns the marginal probability that F = 1, because we cannot deduce from the data whether a filer would have been located had he not filed. 308

372 10 B. Erard, C.-C. Ho / Journal of Public Economics 1 (2000) 000–000

341 3.4. Two-stage estimation strategy

Since the conditional likelihood function excludes all unlocated nonfilers from 342 the analysis, it can be expected to generate poor estimates of the likelihood that a 343 given nonfiler can be located. This is a common problem in truncated regression 344 specifications. To get around this difficulty, we take advantage of the fact that 345 346 although details pertaining to the filing decision (X_{r}) are not available for unlocated nonfilers, we do have details pertaining to the chances of being located 347 (X_r) for this group. From Eqs. (17) and (18), the conditional probability that an 348 individual will be located given that he does not file is of the logistic form: 349

350
$$P_{L|F}(L=1|F=0) = \frac{\exp(\beta'_L X_L)}{1 + \exp(\beta'_L X_L)}.$$
 (21)

This observation leads us to estimate the parameters of our model in two stages. 351 First, we estimate β_L by performing a univariate logit analysis of Eq. (21) using 352 our sample of located and unlocated individuals who did not file. We then 353 substitute the estimated value of β_L into the conditional likelihood function defined 354 by Eqs. (19) and (20) and estimate the remaining parameters (β_F , K, and α). The 355 standard errors for the second stage parameter estimates are adjusted to account for 356 first-stage sampling error using the procedure described in Murphy and Topel 357 (1985). 358

359 3.5. Choice-based sampling

A minor complication for our analysis is that different sampling rates were used to select the filers and nonfilers in our study, resulting in a choice-based sample. Manski and Lerman (1977) have shown that weighting the likelihood function by the inverse of the sampling rates will generate consistent estimates for choicebased samples. We therefore apply this weighting strategy in both of the stages of our analysis.¹⁶

366 4. Description of data

The data used for filers of 1988 federal income tax returns is based on a 25 percent random subsample of the IRS TCMP Phase III Survey. This survey contains the results of intensive line-by-line audits of a stratified random sample of approximately 54 000 individual income tax returns for tax year 1988. For most line items both the amount that was reported by the taxpayer and the amount that

 ¹⁶We adjust the standard errors of our parameter estimates to account for the weighted estimation
 procedure using the formula presented in Manski and Lerman (1977).

the examiner determined should have been reported are available. In addition, information is recorded about the prior filing history of the taxpayer, and a code is available for the taxpayer's occupational category.¹⁷ A set of sample weights is included to make the data representative of the national return population.¹⁸ Selection into the 25 percent subsample was restricted to taxpayers who were required to file a 1988 return.¹⁹

The data on potential nonfilers is from the collection-based segment of the IRS 392 TCMP Phase IX Nonfiler Survey for tax year 1988. This survey includes 393 information for a stratified random sample of approximately 23 000 cases from a 394 population of 83 million individuals for whom there was no record of a 1988 395 individual income tax return. These individuals were identified through a social 396 397 security number match of IRS tax records with the Social Security Administration Date of Birth/Date of Death Master File, which lists all individuals with valid 398 social security numbers.²⁰ The potential nonfilers identified through this match 399 include actual ghosts, late filers, and individuals who were not required to file a 400 return.²¹ An intensive effort was made by IRS agents to locate each of the 401 individuals in the sample. Information that was known about each individual prior 402 to the search is available, including the individual's age, whether a return had been 403 filed for the previous tax year, and whether third-party information return 404 documents were available for the 1988 tax year. 405

A total of 18 689 of the 23 286 potential nonfilers in the sample were 406 successfully located through the search process. The sample weights for these 407 18 689 individuals sum to approximately 57 percent of the potential nonfiler 408 population.²² Revenue officers had access to information documents and past filing 409 records. Armed with this information they conducted interviews or field visits to 410 determine whether a successfully located individual's income was above the filing 411 412 threshold. Tax returns were secured from 3549 individuals who were deemed to have been in violation of their tax filing requirements. 413

A separate segment of the nonfiler survey, the examination-based segment, is used to construct variables for analyzing the filing decision. A random subsample of 2195 of the 3549 secured delinquent returns from the collection-based segment

³⁷⁴

 ¹⁷This code is recorded by the IRS examiner based on his assessment of the taxpayer's occupation.
 ¹⁸These weights do not account for returns that were filed late or for the returns of nonresident taxpayers.

 ¹⁹According to our tabulations approximately 9.7 percent of the returns in the TCMP survey,
 representing 10.1 million households, were not legally required to file a return. In the majority of cases
 these individuals voluntarily filed a return to claim a refund or an Earned Income Credit.

²⁰Nonresidents and individuals without valid social security numbers were excluded from the analysis.

^{382 &}lt;sup>21</sup>Recall that ghosts (i.e., nonfilers) are defined as individuals who fail to file a return in violation of federal filing requirements.

²²Unlocated individuals in the sample tended to have much larger sample weights as a consequence of the way the sample was stratified.

456 12 B. Erard, C.-C. Ho / Journal of Public Economics 1 (2000) 000–000

were subjected to intensive line-by-line audits. The information recorded in the 430 examination-based segment of the survey is comparable to that recorded in the 431 TCMP Phase III Survey of filers discussed previously. We have adjusted the 432 sample weights for the secured delinquent returns in this file so that they are 433 broadly representative of all located nonfilers from the collection-based segment.²³ 434 An additional adjustment to the sample weights was made to convert the 435 individual-specific sample weights into return-specific weights. This adjustment 436 was necessary to make the data on nonfilers comparable to the data on filers, 437 which are recorded on a return-specific basis.²⁴ 438

439 **5. Estimation results**

In this section we present the results of our analysis of taxpayer filing behavior.
We first present results for the probability that a nonfiler can be located, followed
by results for the decision whether to file a return.

443 5.1. Locating potential nonfilers

The first stage of the two-stage analysis involves univariate logit estimation of odds of being located based on a large sample of individuals who did not file a 1988 tax return. We restrict the regressors for this portion of the model to information available to the IRS prior to conducting its search for these individuals. In addition to a constant term, the following variables are used as regressors (X_I) in this stage of the analysis:

- 451 1. Prior Yr. Filer: Dummy variable equal to one if the individual filed a 1987
 452 income tax return; zero otherwise.
- 453 2. IRP Income: Dummy variable equal to one if there is an information returns
 454 program (IRP) record of any 1988 income; zero otherwise.
- 455 3. Prior Yr. Filer*IRP Income: Interaction of the above two dummy variables.

⁴²⁵

²³The collection-based segment identifies a total of 4563 individuals who failed to comply with their filing requirement, including the 3549 from whom returns were secured. The collection-based segment divides returns into 23 sampling strata based on factors such as the presence or absence of information returns, the amount of income shown on those returns, the individual's filing history, and age. Within each stratum, all individuals have the same sample weight. For each of the 23 sampling strata employed for sample selection, we adjusted the sample weights for the returns in the examination-based segment.

²⁴To make the adjustment, we divided the sample weights for the secured delinquent returns of married joint nonfilers by a factor of two. All else equal, a delinquent married couple's return has approximately twice the chance of being included in our sample as a delinquent single individual's return.

B. Erard, C.-C. Ho / Journal of Public Economics 1 (2000) 000-000

457 458				
460 461	Variable	Weighted sample mean		
462	Prior yr. filer	0.0762		
463	IRP income	0.4835		
464	Prior yr. filer*IRP income	0.0645		
465	Spouse	0.0980		
489	Age 65	0.3107		

503

B. Erura, C.-C. 110 / Journal of Lubic Economics 1 (2000) 00

486
 4. Age 65: Dummy variable equal to one if the individual's age is sixty-five or greater; zero otherwise.

5. Spouse: Dummy variable equal to one if available records indicate a spouse;
zero otherwise.

Variables pertaining to the presence of prior year tax returns and third-party information reports are included, because these documents may contain relevant information about the individual's address, his place of work, or where he holds financial accounts. The age 65 and spousal dummies are included, because it is plausible that elderly individuals and married individuals are less mobile and therefore easier to locate than young and single individuals. The weighted mean values of the regressors in our sample are presented in Table 1.

The results of our logit analysis of the probability of being located are presented in Table 2.²⁵ Each of the parameter estimates is of the expected sign, and they all are statistically significant. The interaction between the prior year return and IRP income dummies is negative and rather large, indicating that having access to IRP information only modestly improves the odds of locating an individual when there is already a record of a prior year return.²⁶

468 Table 2

Variable	Estimate	<i>t</i> -statistic	
Constant	-1.1577	-77.46	
Prior yr. filer	2.4027	3.83	
IRP income	2.8288	75.19	
Prior yr. filer*IRP income	-2.6725	-4.12	
Spouse	1.9070	16.26	
Age 65	0.2434	8.71	

Results of estimation — probability of being located^a

480 ^a Number of observations: 23 283; value of log-likelihood function: -11 124.8.

481 ²⁵The analysis incorporates the sampling weights, which make the observations representative of the 482 overall population of individuals who did not file a return.

²⁶For example, the probability of locating a single individual under 65 years of age rises from 77.6 percent to 80.2 percent when IRP information also becomes available.

⁴⁸³

545	14	B. Erard, CC.	Ho / Journal of Pi	ublic Economics 1 (2000) 000–000
504 505 506	Table 3 Observed an	d predicted outcom	es of search for no	nfilers ^a
507 508	Observed	Predicted		Total
<i>509</i> 510		L = 0	L = 1	
511	L = 0	31.5 million	6.6 million	38.1 million
512	L = 1	10.0 million	40.4 million	50.4 million
513 514	Total	41.5 million	46.9 million	88.4 million
515	^a Pseudo J	$R^2 \cdot 0.3008$		

515 ^a Pseudo R^2 : 0.3008.

519

Table 3 provides some measures of model fit. Overall, our logit specification performs well, correctly classifying over 80 percent of all located and unlocated individuals. The pseudo- R^2 for the specification is a respectable 30 percent.²⁷

523 5.2. The decision whether to file

In the second stage of our analysis, we estimate the remaining parameters of our model using a data sample containing information on both filers and located nonfilers. These estimates are based on the conditional likelihood function presented in Eqs. (19) and (20). In addition to the constant term, the following variables are included as regressors (X_F) for the filing decision:

- Prior Yr. Filer Dummy variable equal to one if the individual filed a 1987
 income tax return; zero otherwise.
- 532 2. Filing Burden: An IRS estimate of the number of hours required to complete533 the tax return.
- 534 3. Filing Threshold: A dummy variable equal to one if the individual's gross
 535 income is within 5 percent of the filing threshold level for his age and filing
 536 status; zero otherwise.
- 537 4. Burden*Threshold: Interaction between the above two variables.
- 538 5. **State Tax:** Dummy variable equal to one for residence in a jurisdiction with a state-level income tax; zero otherwise.
- 540 6. Business Income: Dummy variable equal to one if Schedule C (business)
 541 income or loss is present; zero otherwise.
- 542 7. Farm Income: Dummy variable equal to one if the Schedule F (farm) income
 543 or loss is present; zero otherwise.
- 544 8. **Professional:** Dummy variable equal to one if the individual is a professional;

²⁷This measure is computed as $1 - \ln L_{\Omega} / \ln L_{\omega}$, where $\ln L_{\Omega}$ is the value of the log-likelihood function for our model, and $\ln L_{\omega}$ is the value of the log-likelihood function when the model is restricted to have no regressors other than a constant term.

587	B. Erard, CC. Ho / Journal of Public Economics 1 (2000) 000–000 15
546	zero otherwise. (This dummy is excluded from the analysis, making this the
547	omitted occupation category.)
548	9. Supervisor: Dummy variable equal to one if the individual is a supervisor or
549	manager; zero otherwise.
550	10.Service/Admin. Support: Dummy variable equal to one if the individual
551	works in a service occupation (including transportation) or provides administra-
552	tive support; zero otherwise.
553	11.Ag./For./Fishing Dummy variable equal to one if the individual is employed
554	in an agriculture, forestry, or fishing occupation; zero otherwise.
555 556	12. Mechanic/Helper: Dummy variable equal to one if the individual is a mechanic, helper, or handler; zero otherwise.
557	13.Constr./Extrac./Prod.: Dummy variable equal to one if the individual works
558	in a construction, extraction, or production occupation; zero otherwise.
559	14. Military: Dummy variable equal to one if the individual works in the military;
560	zero otherwise.
561	15.Other: Dummy variable equal to one if the individual doesn't work in any of
562	the above occupations; zero otherwise.
563	16.Age 65: Dummy variable equal to one if the individual's age is 65 or greater;
564	zero otherwise.
565	17. Married: Dummy variable equal to one if the individual's filing status is married joint return; zero otherwise.
566	18.# Dependents: Number of dependents.
567	19.Unemployment Income: Dummy variable equal to one if the individual
568	received unemployment income; zero otherwise.
569 570	20. AGI: Adjusted gross income divided by \$100 000. (If AGI is negative, AGI is
570 571	set equal to zero.)
572	21.Locatability: Index of the likelihood of being located (equal to $\beta'_I X_I$ in Eq.
573	(14)).
515	(17)).
574	The variables related to income, occupation, and filing status were based on the
575	examiner-determined values rather than those originally reported by the taxpayer.
576	Due to noncompliance, the former are likely to be more representative of the true
577	values of these variables.
578	As discussed in Section 2, the decision whether to file a return should depend on
579	an individual's past filing behavior, the burden associated with filing, the
580	opportunities for successfully underreporting income, and the chances of being
581	caught and penalized for not filing. The dummy variable for the presence of a 1987
582	tax return is included to account for the individual's past filing history. As a
583	measure of the filing burden, we employ an IRS formula to estimate the number of
584	hours it would take to complete a tax return given the sources of the individual's

income and deductions. We also include a dummy variable for whether an

individual's income is close to the filing threshold and an interaction between the

585

630 16

591

B. Erard, C.-C. Ho / Journal of Public Economics 1 (2000) 000-000

burden measure and the threshold dummy. Our intuition is that an individual may elect not to file if his income is only marginally above the threshold, particularly if his return is difficult to complete.²⁸

The dummy variable for residence in a jurisdiction with a state income tax 601 might be expected to have a positive association with filing a return. To the extent 602 that such states also have nonfiler detection programs and share information with 603 604 the federal government, an individual from a state with its own tax may perceive a greater risk of penalty for not filing. It is difficult to predict the sign on the 605 business and farm income dummies a priori. An individual with these sources of 606 income may have relatively good opportunities for underreporting income if he 607 files. On the other hand, to the extent that his income from these sources is 608 609 'off-the-books', he may have relatively good opportunities for not filing as well.²⁹ We control for the influence of a variety of occupations on the filing decision. We 610 also control for a number of demographic characteristics, including age (whether 611 age 65 or over), marital status, number of dependents, receipt of unemployment 612 insurance, and income. The final explanatory variable is an index of the likelihood 613 that an individual could be located if he were to become a nonfiler. We anticipate 614 that this variable will have a positive relationship with the filing decision. 615

As discussed in Section 3, at least one regressor from the first stage of our 616 analysis (for the probability of being located) must be excluded from our filing 617 equation to identify the parameters of this equation. We have excluded the two 618 terms from the first stage that involve the presence of income subject to third-party 619 information reporting.³⁰ Our assumption is that third-party information reports 620 influence the filing decision only indirectly, by raising the likelihood that the 621 individual will be located and apprehended if he chooses not to file.³¹ The 622 weighted mean values of all regressors in our data sample for the second stage are 623 624 presented in Table 4. The table includes both the means based on the overall sample and the means based on the subsample of located nonfilers. 625

Table 5 presents the results of our analysis of the decision whether to file an income tax return. In addition to providing the estimated parameter values and associated *t*-statistics, we have included estimates of the marginal effect for each variable on the unconditional probability of filing. These estimates reflect the

²⁸Taxpayers may be able to reduce their filing burden by paying a tax practitioner to complete their returns. Refer to Erard (1997) for an analysis of the decision to use a tax preparer and its consequences for reporting compliance.

²⁹As discussed by Simon and Witte (1982) it is commonly believed that individuals with substantial 'off the books' income are disproportionately represented among the nonfiler population.

³⁰Specifically, these terms are IRP Income and Prior Yr. Filer*IRP Income.

³¹The Spouse dummy variable in the first stage equation also differs somewhat from the Married dummy variable in the filer equation, because the former variable is based on information from the previous year's records.

Variable	Weighted mean overall sample	Weighted mean ghost subsample	
PRIOR YR. FILER	0.9177	0.2474	
IRP income	0.9837	0.8053	
Pri. yr. filer*IRP Inc.	0.9116	0.2350	
Spouse	0.4148	0.1614	
Age 65	0.1022	0.0743	
Filing burden	14.103	13.406	
Filing threshold	0.0807	0.3167	
Burden*threshold	0.7000	3.3129	
State tax	0.8144	0.8123	
Business income	0.1474	0.3040	
Farm income	0.0250	0.0095	
Supervisor	0.1092	0.0893	
Service/admin. suppt.	0.2288	0.2035	
Ag./for./fishing	0.0218	0.0152	
Mechanic/helper	0.0958	0.2271	
Constr./extrac./prod.	0.1307	0.0639	
Military	0.0517	0.0065	
Other	0.2425	0.2729	
Married	0.4983	0.2951	
#Dependents	0.6572	0.4731	
Unempl. income	0.0749	0.0457	
AGI	0.3184	0.1732	
Locatability	2.2098	1.4124	

668 marginal change in the probability of filing a return in response to a one unit increase in a given variable, holding all other variables fixed.³² 669

The marginal effect for a given variable will tend to vary according to the 670 values of the regressors being held fixed. For this reason, two separate sets of 671 marginal effects are provided. The first set is computed using the weighted mean 672 values of the variables over the entire sample. The second set is computed using 673 the weighted mean values of the variables over the subsample of nonfilers. Thus, 674 the first set will provide an indication of the marginal effect for an individual with 675 the average characteristics of the overall population, while the second will provide 676

667 661 ³²The unconditional filing probability is:

663
$$\frac{\exp(\beta'_{F}X_{F} + (1+\alpha)\beta'_{L}X_{L} + K) + \exp(\beta'_{F}X_{F} + \alpha\beta'_{L}X_{L})}{1 + \exp(\beta'_{L}X_{L}) + \exp(\beta'_{F}X_{F} + \alpha\beta'_{L}X_{L}) + \exp(\beta'_{F}X_{F} + (1+\alpha)\beta'_{L}X_{L} + K)}.$$

The value of $\beta'_{1}X_{1}$ is held constant in the computation of the marginal effects of all variables other than 665 666 the index, itself.

729 18

Table 5

678

B. Erard, C.-C. Ho / Journal of Public Economics 1 (2000) 000-000

Variable	Parameter estimate	t-statistic	Marginal effect at full sample mean	t-statistic	Marginal effect at ghost subsample mean	<i>t</i> -statistic
Constant	-10.208	-15.858				
Prior yr. filer	4.036	22.133	0.3586	11.295	0.5986	15.719
Filing burden	0.005	0.385	0.0001	0.382	0.0012	0.385
Filing threshold	0.147	0.632	0.0019	0.247	0.0344	0.235
Burden*threshold	-0.094	-2.143	-0.0013	-2.146	-0.0223	-2.190
State tax	-0.168	-0.935	-0.0022	-0.992	-0.0391	-0.938
Business income	-1.424	-5.458	-0.0347	-3.178	-0.3388	-5.704
Farm income	-0.212	-0.458	0.0033	0.415	-0.0511	-0.449
Supervisor	-0.477	-2.634	-0.0161	-4.381	-0.1440	-3.916
Service/admin. suppt.	0.612	2.453	0.0058	2.099	0.1538	3.040
Ag./for./fishing	1.075	2.254	0.0082	2.754	0.2034	2.875
Mechanic/helper	-0.852	-3.576	-0.0291	-3.784	-0.2850	-5.686
Constr./extrac./prod	1.241	4.409	0.0111	6.375	0.2425	5.655
Military	-0.376	-0.977	-0.0123	-1.334	-0.1072	-1.185
Other	0.281	1.060	0.0005	0.140	0.0710	1.227
Age 65	-0.659	-2.513	-0.0121	-2.027	-0.1617	-2.490
Married	-0.030	-0.171	-0.0004	-0.171	-0.0072	-0.170
# Dependents	0.076	1.058	0.0011	1.039	0.0180	1.057
Unempl. income	-0.664	-3.925	-0.0124	-3.063	-0.1634	-3.892
AGI	-0.017	-0.456	-0.0002	-0.457	-0.0040	-0.456
Locatability	0.435	2.822	0.0061	2.923	0.1029	2.705
K	10.055	22.747				

^a The marginal effect represents the change in filing probability for a 1 unit increase in an explanatory variable. In the case of a dummy variable, it represents the change in filing probability when the dummy value shifts from zero to one; for an occupation dummy, the effect is computed as the change in filing probability from when the dummy equals zero and the other occupation dummies are evaluated at the sample mean values to when the dummy equals one and all other occupation dummies set equal to zero. (The omitted occupation is Professional.) Number of observations: 15 489; value of log-likelihood: -1648.1.

an indication of the marginal effect for an individual with the average characteris tics of the ghost population.³³

As expected, there is substantial persistence in filing behavior. An individual

725

³³For a given occupation dummy variable, this marginal effect is computed by taking the difference 717 718 between the probability of filing when that occupation dummy is equal to one, the remaining 719 occupation dummies are all zero, and the other variables are held at their mean values, and the 720 probability of filing when that occupation dummy is zero and the other occupation dummies and all other variables are held at their mean values. The marginal effects for the non-occupation dummies are 721 computed as the difference between the probability of filing when the dummy is equal to one and all 722 723 other variables are held at their mean values and the probability of filing when the dummy is equal to 724 zero and all other variables are held at their mean values.

19

who filed in the previous year is very likely to file in the current year. The first set 734 of marginal results (based on the overall sample variable means) indicates that 735 having filed last year increases the probability of filing this year by 36 percent. The 736 second set of marginal results (based on the nonfiler subsample variable means) 737 indicates that having filed previously raises the chances of filing in the current year 738 by 60 percent! As discussed in Section 2, one explanation for the observed 739 persistence in filing behavior is that a change in behavior might serve as a signal to 740 the tax authority that enforcement action is warranted. For example, if an 741 individual with no previous filing history completes a return, this may prompt the 742 tax authority to investigate whether previous returns also should have been filed. 743 Similarly, if an individual has routinely filed in previous years, the tax authority 744 745 may find it suspicious if he should suddenly stop filing. An alternative interpretation of the observed persistence of filing behavior is that filing is a learned 746 responsibility. Under this interpretation, some individuals fail to file simply 747 because they are unaware of their filing obligation. It follows that if they should 748 learn of their obligation, they will begin filing returns and continue doing so in 749 future years.³⁴ 750

The estimated marginal effects for the burden and threshold variables are 751 statistically insignificant. However, the marginal effect for the interaction between 752 these variables is negative and significant. For an individual whose income is near 753 the filing threshold, the estimated marginal effect of a 1 h increase in the time 754 necessary to complete a return is about a two percent rise in the probability of 755 filing (based on the sample mean characteristics of the ghost population).³⁵ One 756 interpretation of this finding is that the burden of completing a return serves as a 757 deterrent to filing for individuals with relatively low income (and hence, relatively 758 low tax liability). An alternative interpretation is that individuals with low income 759 are relatively less likely to be aware of their filing obligation or invest in learning 760 about it. Under this interpretation, the measure of filing burden may be thought of 761 as a proxy for the transparency of the individual's filing obligation. In other words, 762 filing requirements may seem more obvious under simpler tax circumstances (i.e., 763 when the filing burden is low). Consequently, low income individuals with low 764 765 measures of tax burden may be relatively more likely to file than low income individuals with more complex tax circumstances. 766

Individuals with business income are relatively less likely to file a return.
Among the different occupation categories, mechanics and helpers are the least
likely to file (other factors equal). Presumably, their income is more easily
concealed than that of workers in many other occupations (e.g., Professionals).
Perhaps surprisingly, the results indicate that individuals employed in construction,
extraction, and production are the most likely to file.

- The elderly and the unemployed are relatively less likely to file. However, the
- 731

³⁴We thank a Referee for pointing out this alternative interpretation.

 ³⁵The estimated marginal effect remains at about two percent if one restricts the coefficients for the
 burden and threshold variables to zero.

819 20

B. Erard, C.-C. Ho / Journal of Public Economics 1 (2000) 000-000

other demographic controls (marital status, number of dependents, and adjusted
 gross income) are not significantly related to the filing decision.³⁶

The estimated coefficient of the index for the likelihood that an individual can be located is positive and significant. A one unit increase in this index, evaluated at the weighted mean value of the index for the ghost population, results in an 11.4 percent increase in the likelihood of being located. The estimated marginal effect of 10.3 percent is therefore quite large, suggesting nearly a one-to-one relationship between the likelihood of being located and the probability of filing.

The estimated value of parameter K, which measures the strength of the correlation between the probability of filing and the probability of being located is also positive and significant. This indicates that unobserved factors which make an individual easier to locate also tend to make him likely to file.

Table 6 provides some measures of the fit of our specification for the likelihood 803 that an individual will file a return. About 95 percent of the individuals in our 804 weighted sample filed a 1988 federal income tax return. The model correctly 805 classifies all but one percent of these individuals as filers. Not surprisingly, the 806 model also classifies a number of the nonfilers in our sample as filers. However, 807 the model does demonstrate a significant amount of discriminatory power. About 808 43 percent of the nonfilers are correctly classified, and the pseudo- R^2 for the 809 specification is 45.2 percent. 810

The results from our structural model rely on the validity of our exclusion 811 restrictions; specifically, the exclusion of the variables relating to the presence of 812 third-party information reports from the filing equation. As discussed previously, 813 we have assumed that these variables only indirectly affect the filing decision 814 through their impact on the likelihood that one will be located if he chooses not to 815 file. To examine the sensitivity of our results to this identifying assumption, we 816 817 have estimated the reduced form version of our model. In this version, our index for the likelihood of being located is replaced as a regressor in the filing equation 818

775 776 777	Table 6 Observed and	d predicted filing	outcomes ^a		
,,,, ,78	Observed	Predicted		Total	
7 <i>80</i> 781		F = 0	F = 1		
782	F = 0	2.0 million	2.7 million	4.7 million	
783	F = 1	0.8 million	91.7 million	92.5 million	
784 85	Total	2.8 million	94.4 million	97.2 million	
786	^a Pseudo <i>F</i>	R^2 : 0.4520.			

790

³⁶Observe that income does play an indirect role in the filing decision through the burden-filing threshold interaction term. As noted previously, filing by individuals with income near the threshold is sensitive to the level of burden they face in completing their returns.

21

with the third-party information report variables.³⁷ Not surprisingly, we find that the likelihood of filing increases when third-party information reports are available. The estimated marginal effects of the remaining regressors on the likelihood of filing are quite similar to the estimated effects of these variables in our structural specification. Thus, regardless whether the risk of being located is given a direct or an indirect role in the filing decision, our main findings seem to be robust.

830 6. Filer and nonfiler characteristics

In this section we employ the results of our econometric analysis to generate 831 statistics on nonfiler income, adjustment, and deduction characteristics. We 832 compare these statistics with the corresponding values from the filer population. 833 We provide separate estimates for the 'locatable' ghost and overall ghost 834 populations. The former population is defined as the set of ghosts who would be 835 located if an intensive search were performed by the IRS for all potential nonfilers. 836 The latter is defined as the entire ghost population, including those ghosts who 837 would not be located through an intensive search. To generalize our located 838 nonfiler results to the overall ghost population, we adjust the sample weights for 839 located nonfilers using the first-stage probability estimates from the two-stage 840 analysis of Section 5. Specifically, the original sample weight for each located 841 nonfiler is divided by the logit-based estimate of the probability that the individual 842 would be located. Our statistics for the overall ghost population are then computed 843 based on the adjusted weights. Our statistics for the filer population are based on a 844 weighted analysis of the complete TCMP Phase III Survey data file, excluding 845 those taxpayers who were not required to submit a return. Again, the statistics are 846 computed using the examiner-determined values for the relevant variables. 847

Table 7 summarizes income and deductions for filers, locatable ghosts, and all 848 ghosts. Relative to ghosts, filers tend to have substantially larger incomes. For 849 example, their total income before adjustments is on average over two and 850 one-half times larger than that of nonfilers. Taxable income for filers represents 851 68.8 percent of total income before adjustments. For ghosts, taxable income 852 represents 71 percent of total income before adjustments, indicating that nonfilers 853 have relatively fewer offsets to income. Intuitively, ghosts have little incentive to 854 participate in tax planning. Similarly, nonfilers are relatively less likely to have 855 itemized deductions in excess of the standard deduction threshold. Interestingly, 856 though, among those ghosts whose deductions exceed the threshold, the average 857 total deduction is actually larger than that of filers who itemize. Table 7 also 858

 ³⁷In the reduced form specification, the spousal dummy variable also enters as a regressor in this
 equation.

22 B. Erard, CC. Ho / Jour	nal of Public E	conomics 1 (200	00) 000-000
Table 7			
Mean income and deductions for filers an	d ghosts, tax ye	ear 1988 ^a	
	Filers	Ghosts	
		Locatable	All
Mean total income (before adjustments)	\$32 376	\$15 974	\$12 448
Mean taxable income	\$22 276	\$11 349	\$8838

Mean total deductions among itemizers \$11 832 \$13 061 \$12 911 870 871 ^a Statistics weighted to be representative of all filers who are required to file, all locatable ghosts, and 872

873 all ghosts, respectively.

indicates that income is on average larger for locatable ghosts than for the overall 898 ghost population. However, their mean income is still only about half that of filers. 899 Table 8 displays income, adjustment, and itemized deduction amounts as a 900 percentage of total income before adjustments for filers, locatable ghosts, and all 901 ghosts. Wages and salaries, interest, dividends, and pension income make up a 902 much more substantial share of total income for filers than nonfilers, while 903 business income and net capital gains receipts are relatively more important for 904 nonfilers. The findings for wages and salaries and business income reflect the fact 905 that the ghost population includes a disproportionate share of self-employed 906 individuals. The findings for interest, dividends, and pension income may reflect 907 an aversion by nonfilers to leaving a paper trail. A possible explanation for the 908

	Filers	Filers Ghosts	
		Locatable	All
Income items			
Wages and salaries	72.73%	61.56%	69.89%
Taxable interest	5.78%	4.87%	4.34%
Dividends	2.29%	0.64%	0.58%
Taxable pensions	4.24%	2.92%	2.55%
Taxable soc. sec.	0.48%	0.17%	0.15%
Unemployment comp.	0.37%	0.54%	0.49%
Net business (Sch. C)	5.17%	20.85%	14.27%
Net farm (Sch. F)	0.11%	0.54%	0.51%
Net cap. gains (Sch. D)) 4.77%	10.75%	10.05%
Net. supplemental (Sch.	E) 2.24%	0.08%	0.07%
All other	1.82%	-2.92%	-2.90%
Total adjustments	0.82%	0.40%	0.34%
Total itemized deductions	11.74%	7.90%	6.85%

^a Statistics weighted to be representative of all filers who are required to file, all locatable ghosts, and 896 all ghosts, respectively.

897

874

Table 8

23

capital gains finding is that nonfilers have relatively less incentive to offset taxable
capital gains with capital losses. Perhaps for similar reasons, discretionary
adjustments and itemized deductions tend to be relatively less important as a share
of total income for nonfilers than they are for filers.

924 **7. Net tax liability**

We have used our adjusted sample weights for located nonfilers to generate an 925 estimate of the net tax liability of the overall ghost population.³⁸ The results 926 indicate that ghosts were responsible for approximately \$5 billion in unpaid 927 928 income taxes for tax year 1988, after accounting for tax prepayments such as taxes withheld and estimated tax payments they had made. Approximately 43 percent of 929 all nonfilers made at least some form of prepayment, compared to 93 percent of 930 filers.³⁹ Overall, prepayments by nonfilers covered about half of their aggregate 931 income tax liability. 932

933 Not all individuals who are required to file a return owe taxes. In fact, our estimates indicate that 29 percent of all ghosts had no tax liability for tax year 934 1988. Moreover, we estimate that 22.2 percent of the overall nonfiler population 935 for this year would have been entitled to a refund if they had filed a return. The 936 median size of this refund would have been \$407, a figure which presumably 937 938 exceeded the burden of filing in many cases. It therefore seems plausible that some of these nonfilers were unaware of the magnitude of the refund to which they were 939 entitled. 940

In addition to the \$5 billion in aggregate unpaid income taxes, our estimates 941 indicate that nonfilers owed approximately \$2.8 billion in self-employment taxes. 942 Our estimates tend to understate the true unpaid tax liability of ghosts, because 943 even experienced examiners are unable to uncover all income that has gone 944 unreported. In its most recent tax gap report (U.S. Internal Revenue Service, 945 1996), the IRS has used an approach similar to ours to estimate the nonfiler tax 946 gap.⁴⁰ However, its estimate includes a sizeable adjustment that attempts to 947 account for any income that might not have been detected during the audits. The 948 official IRS estimate of nonfiler net income tax liability (excluding self-employ-949

950

^{910 &}lt;sup>38</sup>The estimate accounts both for ghosts who would be located if an intensive search and audit 911 process were carried out and ghosts who would not be located.

³⁹Approximately 41 percent of nonfilers had at least some income taxes withheld, while 4.3 percent made at least one installment payment of estimated taxes. The comparable figures for filers are 86.8 percent and 12.2 percent, respectively.

⁴⁰In the preliminary stage of our research, we employed a probit analysis of the probability an individual could be located rather than a logit analysis. The results were quite similar. The IRS employed our probit analysis in generating its tax gap estimates using a somewhat different weighting scheme than that employed in this study.

991 24 B. Erard, C.-C. Ho / Journal of Public Economics 1 (2000) 000–000

ment taxes) for tax year 1988 amounts to \$11 billion after adjusting for undetected
noncompliance. No official estimate is available for understated self-employment
taxes.

The estimated size of the ghost population based on our approach is 7.9 million.⁴¹ The IRS estimate of the tax gap for the 110 million filers of tax year 1988 returns is \$73 billion. Thus, while we find that the number of ghosts is only about 7 percent (i.e., 7.9/110) as large as the number of filers, the nonfiler tax gap is approximately 15 percent (i.e., 11/73) as large as the filer tax gap.

As discussed previously, even an intensive search by the IRS was unable to locate all potential nonfilers. However, as shown in Table 7, locatable nonfilers tend to have higher incomes (and hence, higher tax liabilities) than ghosts who cannot be located. In fact, our results (based on detected net tax liabilities) indicate that approximately 82 percent of the overall nonfiler tax gap is attributable to locatable nonfilers.

968 8. Conclusion

Nonfilers have been a neglected group in theoretical and empirical research on 969 tax compliance. Much of this neglect has been due to the lack of reliable 970 information about their characteristics, a problem so severe that nonfilers are 971 sometimes referred to as 'ghosts' by academics and policy-makers. This study 972 provides important evidence on the characteristics of nonfilers and the taxes for 973 which they are liable. We find that nonfiling is more prevalent among self-974 employed individuals and within occupations where income may be more easily 975 concealed from the tax authority, such as mechanics and helpers. In addition, for 976 taxpayers with incomes near the filing threshold, the burden associated with 977 completing a return appears to serve as a deterrent to filing. Thus, initiatives that 978 reduce the burden of filing (such as existing taxpayer assistance programs and 979 simplified tax returns) may encourage individuals with relatively low incomes to 980 file. Moreover, to the extent that the failure to file is due to an ignorance of the tax 981 laws (and even of potential tax refund opportunities), programs to educate 982 individuals about filing requirements may be useful. Our results indicate that there 983 is substantial persistence in filing behavior. Thus, once a ghost is brought into the 984 system, he is likely to remain in the system. 985

Identifying ghosts and encouraging them to file is a challenging task. The results
of this study indicate that only 57 percent of the potential nonfiler population could
be located through an intensive search. However, locatable nonfilers apparently
account for a disproportionate share of all unpaid taxes. Thus, a substantial portion
of the nonfiler tax gap is at least potentially collectable. The extent to which it is

 ⁴¹This is a return-based estimate, meaning that it represents the number of returns that should have
 been filed but were not.

1029 B. Erard, C.-C. Ho / Journal of Public Economics 1 (2000) 000–000

992 cost-effective and/or socially desirable to search out nonfilers and recover taxes is 993 an important question for future research.

994 9. Uncited reference

995 Graeber et al., 1992

996 Acknowledgements

997 An earlier draft of this paper was completed while the first author was an Associate Professor at Carleton University. The current draft was largely com-998 pleted while he was on sabbatical as a Visiting Associate Professor and Office of 999 Tax Policy Research Fellow at the University of Michigan. We are grateful to the 1000 Internal Revenue Service for providing us with access to the data used in this 1001 analysis. We would particularly like to acknowledge Jeff Colson, Dennis Cox, 1002 Carol Sattler, Arthur Sparrow, and Joel Stubbs for many helpful discussions about 1003 the data. We also thank Jim Alm, Matt Murray, Joel Slemrod, and two anonymous 1004 referees for valuable comments on an earlier draft. The first author thanks the 1005 Social Sciences and Humanities Research Council of Canada for financial 1006 assistance. Any opinions expressed in this paper are those of the authors; they do 1007 not necessarily represent the views of the Internal Revenue Service. 1008

1009 **References**

- Andreoni, J., Erard, B., Feinstein, J.S., 1998. Tax compliance. Journal of Economic Literature 36, 1011818–860.
- Allingham, M.G., Sandmo, A., 1972. Income tax evasion: a theoretical analysis. Journal of Public
 Economics 1 (3/4), 323–338.
- Alm, J., Bahl, R., Murray, M.N., 1991. Tax base erosion in developing countries. Economic
 Development and Cultural Change 39 (4), 849–872.
- Blumenthal, M., Slemrod, J., 1992. The compliance cost of the U.S. individual income tax system: a second look after tax reform. National Tax Journal 45 (2), 185–202.
- 1018 Cowell, F.A., 1990. Cheating the Government: The Economics of Evasion. M.I.T. Press, Cambridge.
- Cowell, F.A., Gordon, J.P.F., 1995. Auditing with ghosts. In: Fiorentini, G., Peltzman, S. (Eds.), The
 Economics of Organised Crime. Cambridge University Press, Cambridge, pp. 185–186.
- 1020 Ecolomics of Organised Crime. Canonicale Oniversity Fiess, clambridge, pp. 102-130.
- 1021 Crane, S.E., Nourzad, F., 1993. An empirical analysis of factors that distinguish those who evade on 1022 their tax return from those who do not file a return. Mimeo, Marquette University.
- 1023 Cross, R.B., Shaw, G.K., 1982. On the economics of tax aversion. Public Finance 37, 36-47.
- Engel, E.M.R.A., Hines Jr., J.R., 1999. Understanding tax evasion dynamics. N.B.E.R. Working Paper
 No. W6903.
- 1026 Erard, B., 1992. The influence of tax audits on reporting behavior. In: Slemrod, J. (Ed.), Why People
- 1027 Pay Taxes: Tax Compliance and Enforcement. The University of Michigan Press, Ann Arbor, pp.
- 1028 95-114.

1054 26 B. Erard, C.-C. Ho / Journal of Public Economics 1 (2000) 000-000

Erard, B., 1997. Self-selection with measurement errors: a microeconometric analysis of the decision to
seek tax assistance and its implications for tax compliance. Journal of Econometrics 52 (2),
163–197.

1033 Graeber, M.J., Nichols, B.L., Sparrow, D., 1992. Characteristics of delinquent returns. U.S. Department 1034 of the Treasury, Internal Revenue Service, The IRS Research Bulletin, Publication 1500, pp. 38–46.

Manski, C., Lerman, S., 1977. The estimation of choice probabilities from choice-based samples.
 Econometrica 45.

- Mantel, N., Brown, C., 1973. A logistic reanalysis of Ashford and Bowden's data on respiratorysymptoms in British coal miners. Biometrics 22, 649–665.
- Morimune, K., 1979. Comparisons of normal and logistic models in the bivariate dichotomous analysis.
 Econometrica, 47.
- 1041 Murphy, K.M., Topel, R.H., 1985. Estimation and inference in two-step econometric models. Journal of1042 Business and Economic Statistics 3, 370–377.
- Nerlove, M., Press, S.J., 1983. Univariate and multivariate log-linear and logistic models. Rand
 Corporation Working Paper Number R-1306-eda/nih.
- 1045 Simon, C.P., Witte, A.D., 1982. Beating the System: The Underground Economy. Auburn House, 1046 Boston.
- 1047 Slemrod, J., 1995. A general model of the behavioral response to taxation. Mimeo, University of 1048 Michigan.
- Yitzhaki, S., 1974. A note on income tax evasion: a theoretical analysis. Journal of Public Economics 3 (2), 201–202.
- 1051 U.S. Internal Revenue Service, 1996. Federal Tax Compliance Research: Individual Income Tax Gap
- 1052 Estimates for 1985, 1988, and 1992. U.S. Department of the Treasury, Internal Revenue Service,
- 1053 Publication 1415 (Rev. 4-96), Washington, D.C.